Webinar on verticals onboarding, testing and monitoring in 5G-VINNI

5G-VINNI team, 12 March 2020, webinar

This project has received funding from the EU's Horizon 2020 research and innovation programme under grant agreement No 815279.

General instructions

- Please mute your microphone
- Q&A after the end of the presentation
- During the presentation send your questions via chat
- The session is being recorded

Agenda

- Introduction to 5G-VINNI facility and architecture
- NSaaS delivery model, 5G-VINNI Service Blueprint and Exposure Levels
- Onboarding
- Testing / Monitoring as a Service (TaaS/MaaS)
- Key Performance Indicators

Pål Grønsund

Telenor ASA

INTRODUCTION TO 5G-VINNI FACILITY AND ARCHITECTURE

5G-VINNI (5G Verticals INNovation Infrastructure)

- Build an open large scale 5G End-to-End facility that can
 - demonstrate that key 5G network KPIs can be met
 - be validated, accessed and used by vertical industries (e.g. ICT-19) to test use cases and validate 5G KPIs.
- Duration: 1.July 2018 1.July 2021
- Consortium: 23 partners (operators, vendors, academics, SMEs)
- External Stakeholder Board (vertical industries)

Global Timing and Releases (6 month release cycle)

- 5G-VINNI Facility is ready for ICT-19 project experimentation.
- 5G-VINNI Facility will be available until 1st July 2022

The 5G-VINNI Architecture is common for all facility site implementations

5G-VINNI E2E Architecture with Slicing support

Slice life cycle management and orchestration roadmap

5G-VINNI Facility Sites – Technical Summary (see https://www.5g-vinni.eu/facility-site/, [Deliverable 2.1], [Deliverable 3.2])

Main

Experimentation

	<u>Norway (Oslo, Kongsberg)</u>	UK (Martlesham)	ir Spain (Leganes)	Greece (Patras)
	• Slicing (eMMB, URLLC, mMTC)	Slicing (eMMB, URLLC, mMTC)	• Slicing (eMMB, URLCC, mMTC)	 Slicing (eMMB, URLLC, mMTC, via
	E2E Service Orchestration (Nokia)	 Service Orchestration (Nokia) 	 Service Orchestration (OSM NBI) 	OSM)
' sites	 NFVI (OpenStack) and MANO 	NFV MANO, NFVI and vEMS	 MANO (OSM), NFVI (OpenStack), 	 Service Orchestration (via OSM
	(Nokia)	(Samsung)	and SDN (ODL/ONOS)	NBI services)
	Edge Cloud (Nokia)	5G RAN incl.	Support for micro-VNFs	NFV MANO (OSM) and NFVI
Ē	• Five 5G gNBs (Ericsson, Huawei)	3.5 and 26GHz (Samsung)	• 5G RAN (Ericsson + SDR) 3.5 GHz,	(OpenStack)+DPDK
acil	– 3.5GHz, 80MHz BW	5G Core (Samsung)	band C	5G RAN open source radio (Lime,
щ	– 26GHz, 800MHz BW	3GPP compliance	Model-based telemetry for	SRS)-700-800MHz, 3.53.8GHz
	• 5G Core (Ericsson)	– Rel'15 in 2019, Rel'16 in 2021	monitoring and analytics	5G Core (Open5GCore)
	3GPP compliance	– NSA in 2019, SA in 2020	Edge computing	• NB-IOT, LTE-M (FhG NB-IOT core)
	- Rel'15 in 2019, Rel'16 in 2021		• 5G Core (Ericsson + open-source)	mmWave backhaul (Intracom)
	- NSA in 2019, SA in 2020	P	GEANT connectivity	GEANT connectivity
	Satellite backhaul option (GEO)			al from a
				Jul Jung
	Portugal (Aveiro)	Germany (Berlin)	Germany (Munich)	Luxembourg (Satellite Connected Vehicle)
	 NG-PON2-based 5G 	• 5G RAN prototype(s)	• 5G NR SA BAN (Huawei) 3 5 GHz	• 5G Edge Node on-board
Facility sites	front/backhaul (Alticelabs)	5G Core (Open5GCore)	 5G Core (Huawei) 	satellite connected moving van
	 MANO (SONATA) 	Edge cloud/e2e Orchestration	MANO and NEVI (Huawei)	GEO/MEO satellite backhauling
	 NFVI (OpenStack) 	(OpenBaton, OSM)	SDN (Floodlight)	5G Core (Open5GCore)
	SDN (ODL)	mmWave backhaul	• V2I, V2P	NFVI (OpenStack)
	 5G Core (Open5GCore) 	Interconnection with remote	MEC, Edge Computing	• MANO (OSM)
	Cloud RAN	islands in Betzdorf and Tokyo	URLLC targeting Rel16/17	Edge Computing
	Edge Computing	Large scale events, Nomadic	Sensor fusion enabled by 5G	Network Slicing (eMBB, mMTC)
	Slicing (eMBB, uRLLC, mMTC)	networks, Disaster Relief		Interconnection w/ Berlin site

Services offered by 5G-VINNI to verticals (Main Facility Sites)

Network Slice-as-a-Service (NSaaS)

eMBB network slice as a service

mIoT network slice as a service

uRLLC network slice as a service

Customised network slice

Value Added Services

Monitoring-as-a-Service

Testing-as-a-Service

Security-as-a-Service

3rd party VNF hosting

Distributed data fabric

Edge and Autonomous Edge

Flexible backhaul for redundancy (e.g. Satellite)

Interconnection with other 5G sites

5G-VINNI onboarding verticals webinar

Jose Antonio Ordóñez Lucena

Telefónica Investigación y Desarrollo

NSAAS DELIVERY MODEL, 5G-VINNI SERVICE BLUEPRINT AND EXPOSURE LEVELS

Network Slice-as-a-Service (NSaaS) delivery model

- NSaaS is a future-proof service delivery model
 - Network Slice Instance (NSI) on demand, as a service
 - NSaaS provider and NSaaS customer roles

- Two complementary service views on an NSI:
 - Resource-facing (NSI deployment details) vs.
 customer-facing (NSI exposed capabilities)
 - Abstraction to preserve the required demarcation point between the provider and the customer

5G-VINNI & verticals integration based on NSaaS

NSI The NSI span across public and non public Provided NSI networks (NPN) \rightarrow private networks Vertical admin domain 5G-VINNI admin domain Interworking & **5G-VINNI Management System** Vertical's Management System Exposure platforn NSI SMF UDM AME SMF AUSE Facility App Shared Function across NSIs Edge cloud Core cloud Edge cloud WAN Transport Network

Transport Network (xhaul)

Extended NSI

RRHs

G-VINNI

NSaaS – Two main phases

Network Slice (aaS) Request

The NSaaS customer issues a service order towards NSaaS provider, requesting the deployment of a tailored network slice

and activated

Network Slice (aaS) Operation

The NSaaS customer monitors and takes (some) control over the network slice, deployed and made available by the NSaaS provider

3v 5v 10² 2v 20²⁰ 1v 30v

•

Slice performance assurance and fault supervision

Slice Management & Control

NSaaS Request - Ordering a VINNI-SB

VINNI-SB = 5G-VINNI Service Blueprint

56-VINNI

NSaaS Operation – Service Capability Exposure

- In vertical-oriented experimentation scenarios, different verticals may want to take a more or less proactive role in the operation of their slices
- 5G-VINNI offers to vertical different "capability exposure levels" → levels of control a vertical can take over the provided slice

Level 1	Level 2	Level 3	Level 4
>	1	1	1
×	 ✓ 	1	1
×	×	1	1
×	×	×	1
	Level 1 ✓ × × ×	Level 1 Level 2 ✓ ✓ × ✓ × ✓ × × × × × ×	Level 1Level 2Level 3 \checkmark \checkmark \checkmark \times \checkmark \checkmark \times \checkmark \checkmark \times \times \checkmark \times \times \times

NSaaS Operation – Service Capability Exposure

- Depending on the selected "capability exposure level", a vertical can consume more or less management services within 5G-VINNI admin domain
- Token-based authentication

Christos Tranoris,

Univ. of Patras

ONBOARDING

Network Slice as a Service (NSaaS) delivery model

12/03/2020

5G-VINNI-SB Template – Model diagram

Parameters	for service	requirements s	pecifications
			•

Group	Parameter Name	Parameter ID	
	Peak data rate	P.PERF_1	
	User data rate	P.PERF_2	
	Area traffic density	P.PERF_3	
Performance	5G QoS	P.PERF_4	
	Reliability	P.PERF_5	
	Availability	P.PERF_6	
	Service deployment time	P.PERF_7	
Functionality	Deployment option	P.FUNC_1	
	Access technology	P.FUNC_2	
	Predominant device type	P.FUNC_3	
	Radio spectrum	P.FUNC_4	
	Isolation	P.FUNC_5	
	Support for value-added functionality	P.FUNC_6	
	3rd party VNF hosting	P.FUNC_7	
	Positioning	P.FUNC_8	
Network Optimisation	Number of devices	P.NO_1	
	Device density	P.NO_2	
	Coverage profile	P.NO_3	
	Mobility profile	P.NO_4	
	Service lifetime	P.NO_5	
		•	

G-VINNI

The onboarding and testing process

Resource Specification Relationships There are no resource specification relationships assign

oply Fiter	O Create New Characterist			
A Performance Functionality Networ	k Optimisation	Exposure Level		
Name 🕈	Value Type	Default Values	Configurable	Actions
5G-VINNI Service Type	SET	1 (eM88) N/A	faise	6 6
URArmy-VINNI-SB Service Exposure Level 1::Exposure	Level SET	1 (Level 1) NA	faise	6 6
URArmy-VINNI-SB Service Exposure Level 2::Exposure	Level SET	2 (Level 2) N/A	faise	()
URArmy-VINNI-S8 Service Monitoring: On-demand mo support	nitoring BINARY	1 (Yes)	faise	C 0 0
URArmy-VINNI-SB Service Requirements::5G Quality of (QoS): DL Packet loss rate	Service RLDAT	10 %	faise	C 0 8
URArmy-VINNI-SB Service Requirements::SG Quality of (QoS): DL Packet size	Service INTEGER	8 Bjoes	faise	00
URArmy-VINNI-SB Service Requirements::5G Quality of (QoS): E2E latency	Service INTEGER	10 ms	faise	20
URArmy-VINNI-SB Service Requirements: 5G Quality of (QoS): Jitter	Service INTEGER	10 ms	faise	6 6 1
URArmy-VINNI-SB Service Requirements::5G Quality of (Qo5): One-way latency	Service INTEGER	10 ms	faise	6 6 3
URArmy-VINNI-SB Service Requirements: SG Quality of (QoS): UL Packet loss rate 2/02/20	Service R.OAT	10 %	faise	00
URArmy-VINNI-SB SerVice Requirements: SA QUEITy of (QoS): UL Packet size	SERVICE	8 Bjöes	faise	()
	dan Baras	1.0.0	A	

http://openslice.io

Openslice is a prototype open source, operations support system. It supports VNF/NSD onboarding to OpenSourceMANO (OSM) and NSD deployment management. It also supports TMFORUM OpenAPIs regarding Service Catalog Management, Ordering, Resource, etc.

Demo

- Openslice demo: <u>http://portal.openslice.io/</u>
- Openslice Service Catalogues and ordering: <u>http://portal.openslice.io/services/</u>

Video demo

https://youtu.be/KU8JPDFFI9A

Supported APIs

For a quick access check our swagger links:

- TMF APIs: http://portal.openslice.io/tmf-api/swagger-ui.html
- API for VNF/NSD management:

http://portal.openslice.io/osapi/swagger-ui.html

Andrea F. Cattoni

Keysight Laboratories, Keysight Technologies

TESTING / MONITORING AS A SERVICE (TAAS/MAAS)

What can possibly go wrong?

Product Lifecycles and Testing Stages in Networks

One Ring to Rule Them All...

Tool Types

- Testing-as-a-Service (TaaS) is de-facto an implementation of the 5G TestOps
 - TaaS is a way to unify the testing functionalities for 5G
 - It provides a one-stop-shop for testing service for both CI/CD applications and users
 - Test Automation is the keystone of TaaS

*from 5G PPP Test, Measurement, and KPIs Validation WG White Paper

29

Test Types

Example of TaaS Consumption

- 1. Tests are requested
- Test scripts (TC) present in the TaaS repository are loaded and executed on OpenTAP
- 3. OpenTAP deploys tools e.g. in an OpenStack cloud
- OpenTAP configures the tools to target the newly deployed service

TaaS Onboarding Process

Monitoring as a Service (MaaS)

- MaaS is targeted at having a constant overview of the health and performance of the system
- It consists of two main categories of services: Network Monitoring and Telemetry
 - a) Network Monitoring (or visibility) is the traditional overview of the traffic flowing across the network, in particular emphasizing the visibility in specific critical points in the network
 - **b) Telemetry** is focused on providing the health and performance of the individual Network Service or VNFs/application components

32

• The two categories are very different despite being offered under the same umbrella of MaaS

Network Monitoring/Visibility

- Virtual network taps can be deployed in specific points of the network, as described by the NSD
- The network taps are capable of sniffing (north-south and east-west) traffic, simple filtering, and re-routing the traffic to a specific destination.
- Destination can be an analysis tool (not provided by 5G-VINNI) or a packet broker.
- The packet broker is capable of more advanced filtering, aggregation, and re-routing options to either an analysis tool (not provided by 5G-VINNI) or a traffic recording server

Telemetry

- The typical example is a VNF that exposes metrics.
- Metrics can be either actively pushed, or passively collected, in order to be stored in a database, as e.g. a Prometheus time series one.
- This is common practice in modern virtualized solutions, and the 5G network is no exception.
- Telemetry can be effectively used for:
 - exposing health metrics
 - exposing performance metrics (e.g. network buffers status)
 - exposing directly measured KPIs

Andrea F. Cattoni

Keysight Laboratories, Keysight Technologies

KEY PERFORMANCE INDICATORS

Initial KPIs validation results

Category	KPIs	Achieved Values	Description	
	UL Maximum Throughput (Mbit/s)	104.27 Mbit/s	mmWave, 27.3-27.5 GHz, 4T4R, 1 stream	
	DL Maximum Throughput (Mbit/s)	883.69 Mbit/s	mmWave, 27.3-27.5 GHz, 4T4R, 40 streams.	
	UL Latency (ms)	13.77 ms	3.6GHz, low foot-print traffic profile with	
F2F Notwork Porformance	DL Latency (ms)	9.15 ms	100Kbit/s bandwidth.	
EZE Network Performance	UL Jitter (ms)	1.01 ms	mmWave, 27.3-27.5 GHz, 4T4R, low foot-print traffic profile with 100Kbit/s bandwidth.	
	DL Jitter (ms)	0 ms		
	UL Frame Loss (%)	0.01%	3.6GHz, low foot-print traffic profile with 100Kbit/s bandwidth.	
	DL Frame Loss (%)	0%		
NEV/I Notwork Dorformonoo	Maximum Throughput (0 Frame Loss)	4.573 Gbit/s	two compute nodes, DPDK was configured ir	
NEVI Network Performance	Latency between VMs	0.067 ms	the test environment.	
	CPU Benchmarking Score	3,510	Yardstick CPU/Memory/Storage tests.	
	Memory Read Latency	7.97 ns		
NFVI Compute Resource	Memory r/w Bandwidth	25.641 GB/s		
Performance	Storage r/w IOPS	5.65 k / 4.21 k		
	Storage r/w Latency	188 / 621 ms		
	Storage r/w Bandwidth	1,018 / 425 MB/s		

5G-VINNI

5G-VINNI project and facility sites contacts

- Web page: <u>http://www.5g-vinni.eu/</u>
- Twitter: <u>@5gVinni</u>
- E-mail: <u>5G-VINNI-Contact@5g-ppp.eu</u>

- <u>norway-facility@5g-vinni.eu</u>
- <u>uk-facility@5g-vinni.eu</u>
- spain-facility@5g-vinni.eu
- greece-facility@5g-vinni.eu
- portugal-facility@5g-vinni.eu
- germany-berlin-facility@5g-vinni.eu
- germany-munich-facility@5g-vinni.eu
- luxemburg-facility@5g-vinni.eu

